Взаимосвязь основных параметров современных одноковшовых гидравлических экскаваторов

Э.А. СМОЛЯНИЦКИЙ канд. техн наук

1. Определение удельных расчетных сопротивлений грунтов копанию

Основными рабочими органами одноковшовых строительных гидравлических зкскаваторов являются эскавационные поворотные ковши обратных лопат вместимостью от 0,25 до 2,5 м³, эскавационные и погрузочные ковши прямой лопаты вместимостью от 1,0 до 3,0 м³, предназначенные для работы как в легких связных и сыпучих грунтах, так и в связных грунтах до третьей категории прочности.

Определением сопротивления грунтов копанию ковшами с малой и большой кривизной траектории занимались многие ученые учебных, научно-исследовательских и проектно-конструкторских организаций [1, 2, 3, 4]. В таблице приведены усредненные значения удельных сопротивлений грунтов копанию как детерминированного математически описанного процесса, так и полученные вероятностным методом [5].

Более корректно процесс взаимодействия ковша с грунтом следует считать случайным многофакторным процессом, определяющимся переменными физико-механическими свойствами грунта, состоянием, положением и конструкцией режущей кромки, изменением скоростных параметров процесса, а

также толщины и формы срезаемой стружки и др. Поэтому, во время протекания процесса копания максимальные усилия на режущей кромке ковша могут возникнуть и возникают в любой точке траектории копания. При недетерминированном случайном процессе расчет нагруженности рабочего оборудования обычно производится по некоторому условному циклу монотонного возрастания усилий копания от значения меньше среднего в начале копания до максимального в конце [6].

По данным экспериментальных исследований автора максимальные усилия копания в 1,5–1,7 раза превышают средние значения, а диапазон изменения усилий в одном резе 2,7–3,0 [6.]

Таким образом ,как следует из изложенного, фактические нагрузки на элементы рабочего оборудования в нерасчетных положениях могут оказаться выше, чем в расчетных и привести к стопорению ковша в забое.

С целью предотвращения этого, в качестве исходных данных по определению усилий взаимодействия рабочего органа с грунтом принят интегральный показатель K_{κ} численно равный усредненному значению удельной работы A_{κ} , затрачиваемой на разработку кубометра грунта, т.е.

 K_{K} (KCC\CM²)= 0,1 A_{K} (TCM\M³ = TC\M²).

Источник информации	Усредненное удельное сопротивление копанию, кг\см²		
	Категория грунта		
	2	3	4
Н.Г. Домбровский [1]	O,7-1,6	1,2—2,5	2,2—3,6
Ю.А. Ветров [2]	0,5-1,0	1,25	2,5—5,0
Е.Р. Петерс [3]	1.	2.	3
K_{κ}	1.3	2,0	3,2
$K_{\text{\tiny KB}}$ [5]	1,67	2,68	4,2
Вероятность стопорения	2,5%		

Сила сопротивления грунта копанию, определенная по значению $K_{\rm k}$ является среднеарифметической величиной, когда 50% всех реализаций может иметь значения усилий копания больше рассчитанных по показателю $K_{\rm k}$ [5].

Как видно из таблицы определенные экспериментальным путем усредненные удельные сопротивления грунтов копанию практически совпадают со значениями интегрального показателя $K_{\rm k}$, при котором вероятность стопорения ковша в забое составляет 50%.

Расчетное значение удельного сопротивления грунта копанию $K_{\rm kB}$ определяется таким образом, чтобы вероятность фактического превышения силой копания расчетных значений не выходила за пределы заранее заданного процентного значения. В предположении нормального закона распределения удельное сопротивление грунта $K_{\rm kB}$ может быть определено по зависимости

$$K_{KB} = K_{K} (1 + a_{2}v), v = \sigma/K_{K}$$

где σ — среднеквадратичное отклонение сопротивления грунта копанию от среднего значения, a_2 — квантиль нормального распределения, соответствующий принятой вероятности, ν — коэффициент вариации сопротивления грунта копанию.

Определенное по приведенной зависимости значение показателя $K_{\rm KB}$ в таблице соответствует 2,5% вероятности стопорения ковша в забое.

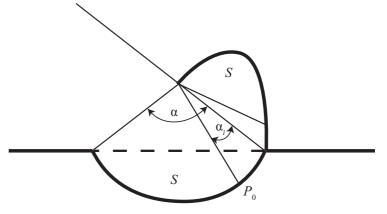
Таким образом, увеличение расчетных значений усилий копания на 30% позволило снизить вероятность стопорения ковша в забое в 20 раз.

Из таблицы также следует, что из условия более рационального использования мощности привода соотношения между емкостями сменных ковшей, предназначенных для разработки грунтов 2, 3 и 4 категорий прочности должны соответствовать соотношению значений 2,46:1,60:1,00.

2. Определение расчетного усилия копания

Кроме знания показателя $K_{\rm kB}$ для определения расчетного усилия копания необходимо определить также площадь срезаемой стружки.

Процесс взаимодействия ковша с грунтом при копании по траекториям малой кривизны аналогичен процессу работы механических лопат [7]. Поэтому, при определении суммарного сопротивления копанию могут быть использованы известные зависимости, применяющиеся при расчете механических экскаваторов [6].


При копании поворотом ковша режущая кромка движется по дуге радиуса $R_{\rm k}$, а сечение вырезанной стружки представляет собой круговой сегмент площадью S (рис. 1), где α – угол поворота ковша при копании.

Из условия заполнения грунтом ковша связь между параметрами ковша и вырезанной стружки может быть записана в виде

$$qK_H = \frac{R_k^2 b K_p}{2} (a - \sin a_i)$$

где b — ширина ковша, $K_{\rm H}$ и $K_{\rm p}$ — соответственно коэфициент наполнения ковша и коэфициент разрыхления грунта.

Выбор соотношения между величинами $R_{\rm K}$, b и α для заданной ёмкости ковша производится с учетом их влияния на энергоёмкость процесса копания. Приемлемую конструкцию ковша и сравнительно низкую энергоёмкость обеспечивает назначение угла поворота ковша при копании α 90—110 град. С уменьшением угла энергоёмкость копания несколько снижается, но быстро растут радиус копания ковша и его ширина, что ограничено условием его прочности. Толщина стружки в процессе копания поворотом ковша может в 2—3 раза превышать толщину стружки характерную для копания поворотом рукояти [7].

Рис. 1. Копание поворотным ковшом: α — угол поворота ковша при копании, α $\sim 100^{\rm o};$ $\alpha_{\rm i}$ — текущий угол поворота ковша

Приняв угол поворота ковша при копании равным 100° зависимость между площадью вертикального сечения ковша S и его радиусом $R_{\rm K}$ определяется выражением [8]

$$R_{\rm K} = 1,63 \ \sqrt{S} \ .$$

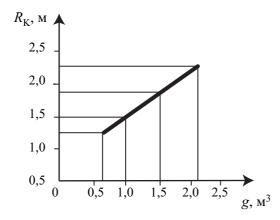


Рис. 2. Зависимость радиуса $R_{\rm K}$ ковша от его вместимости g

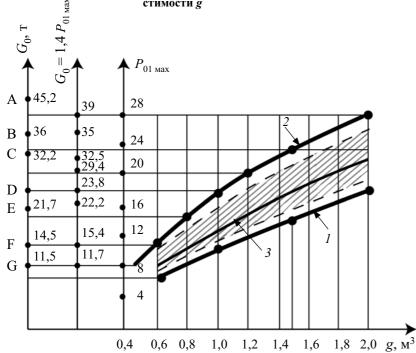


Рис. 3. Рекомендуемые значения максимальной силы копания $P_{01 \text{ мах}}$ для экскавации грунтов II и III категорий и минимальные значения массы G_3 экскаваторов:

I и $2-P_{01\, \mathrm{max}}$, определённые соответственно по коэффициентам $K_{\mathrm{квII}}$ и $K_{\mathrm{квIII}}$ с вероятностью стопорения ковша 2,5%; $3-P_{01\, \mathrm{max}}$, определённые по среднеарифметическому коэффициенту K_{κ} с вероятностью стопорения ковша 50%; заштрихованная часть - $P_{01\, \mathrm{max}}$ для большинства моделей серийных гидравлических экскаваторов; экскаваторы Hyundai; A-R450LC-7A; B-R360LC-7A; C-R320LC-7A; E-R320LC-7A; F-R140W-7A; G-Liebherr A 310 B

Текущее значение толщины срезаемой стружки

$$h_i = R_K \left(1 - \frac{\cos a / 2}{\cos a / 2 - a_i} \right)$$

где α_i — текущее значение угла поворота ковша.

Максимальная толщина стружки

$$h_{\text{max}} = R_{\text{K}}(1 - \cos\alpha/2) = 0.357 R_{\text{K}}.$$

Следующим этапом определения максимального расчетного усилия копания являются:

Введение в выражение для определения максимальной толщины стружки фактического радиуса копания, соответствующего заданной ёмкости ковша (см рис. 2.) и ширины ковша b.

Введение удельного показателя сопротивления грута копанию, соответствующего его категории прочности и заданному значению вероятности стопорения ковша в забое – $K_{\rm KB}$. Тогла.

$$P_{01 \text{ max}} = 0.357 R_{K} bK_{KB}$$
.

Полученные значения максимальных усилий копания при разработке грунтов 2 и 3 категорий представлены на рис. 3 кривыми 1 и 2 для ковшей вместимостью от 0,5 до 2,0 м³. Кривая 3 показывает значения $P_{01\,\,{
m max}}$, определенные по среднеарифметическому значению показателя K_{κ} с вероятностью стопорения ковша в забое 50%. В заштрихованной области между кривыми 1 и 2 и на них распологаются значения $P_{01\,_{
m Max}}$ подавляющего большинства современных гидравлических экскаваторов ведущих зарубежных фирм, на второй оси ординат рисунка приведены массы моделей экскаваторов, которые отвечают условию сцепления машины с грунтом для предотвращения юза. На третьей оси ординат приведены массы экскаваторов.

Анализ изложенного позволяет констатировать, что:

- строительные гидравлические экскаваторы с рабочим оборудованием обратной лопты предназначены, в основном, для работы в грунтах 2 и 3 категорий;
- вероятностный метод определения максимальных усилий копания с предварительным ограничением возможности стопо-

рения ковша в забое соответствует требованиям повышения эффективной эксплуатации экскаваторов;

 коэффициент сцепления движителя экскаватора с грунтом, принятый равным 0,7 полностью соответствует соотношению между максимальным усилием копания и массой машин.

В пределах границ рассматриваемых в рис. З значений основных параметров экскаватора его масса G_3 , вместимость ковша q_k максимальный радиус копания обратной

лопаты $R_{\text{коп}}^{\text{max}}$, связаны зависимостью

$$\frac{q_k R_{\text{KOII}}^{\text{max}}}{G_{\mathfrak{I}}} = 0,56 \div 0,6 ,$$

что справедливо для масс от 20 до 40 т.

Список литературы

- 1. Домбровский Н.Г. Экскаваторы . М. Машиностроение , 1969 г.
- 2. Ветров Ю.А. Расчет сил резания и копания. КИСИ издан. Киевского универ. 1963Г.
- 3. Петерс Е.Р. Основы теории одноковшовых экскаваторов. М.Машгиз , 1955г.
- 4. Зеленин А.Н. Резание грунтов. Изд. АНСССР, 1959г.
- 5. Смоляницкий Э.А. Мобильный гидравлический робот-манипулятор с удаленной зоной действия рабочего органа. Журн. СДМ №12, 2005г.
- 6. Смоляницкий Э.А., Перлов А.С., Королев А.В. Рабочее оборудование полноповоротных гидравлических экскаваторов. Обзор. Изд.ЦНИИТЭ, Москва, 1971г.
- 7. Смоляницкий Э.А., Мокин Н.В. Гидравлические экскаваторы. Ч1 определение параметров. Учебное пособие. НИИЖТ. Новосибирск, 1976г.
- 8. Смоляницкий Э.А. К вопросу обоснования и оптимизации кинематической схемы рычажных механизмов перемещения ковша гидравлического экскаватора. Журн. СДМ №6, 2012 г.

СДМ